ヨネモリ技報<目次>

Vol.2 2024

1.	巻頭言	1	
2.	技術論文、研究報告		
【詣	俞文】		
	開先先行ビルド H 梁端接合部の塑性変形能力	2	
	その6 梁端ウェブ接合形式に着目した一定振幅繰返し載荷実験		
	開先先行ビルド H 梁端接合部の塑性変形能力	$\cdots \cdots 4$	
	その7 内ダイアフラム形式梁端混用接合部の一定振幅繰返し	し載荷実験	
	開先先行ビルド H 梁端接合部の塑性変形能力	6	
	その8 溶接止端間距離と塑性率に着目した一定振幅繰返し	載荷実験(実験概要)	
	開先先行ビルド H 梁端接合部の塑性変形能力	8	
	その9 溶接止端間距離と塑性率に着目した一定振幅繰返し	載荷実験	
	(溶接止端間距離が及ぼす影響)		
	開先先行ビルド H 梁端接合部の塑性変形能力	10	
	その10 溶接止端間距離と塑性率に着目した一定振幅繰返し載荷実験		
	(塑性率の影響)		
	ロボット溶接によるコラム端溶接部形状に関する研究	12	
	その1 レーザースキャナの測定条件の検討		
	ロボット溶接によるコラム端溶接部形状に関する研究	14	
	その2 溶接部形状と継手形状および開先形状の関係		
	水平ウイッピング溶接工法での溶接部の特性	16	
【研究報告】			
	水平ウイッピング溶接工法での溶接部性能	18	
	DIC 法での HAZ 耐力評価方法の提案	23	
	CEN による 0℃での割れ阻止鋼材成分の評価	27	
	振動研磨処理サンプルでの COMPO 像による結晶粒の調査	29	
3.	3. 操業技術		
	エレクトロスラグ溶接での品質確認試験結果(YS385 鋼)	30	
	サブマージアーク溶接での品質確認試験結果(YS385 鋼)	32	
	2021 年ロボット AW 検定対応での調査解析	34	
	3 次元 CAD,3 次元寸法測定器を用いた加工と計測の紹介	36	
	試験室設備と計測事例の紹介	38	
	当社における溶接教育と訓練	43	
4.	施工試験結果		
	550N級 TMCP385 材を用いた CO2半自動溶接施工試験	45	
	建築構造用高性能鋼管 KSAT355 円形鋼管柱溶接施工試験	49	
	冷間プレス成形角形鋼管(G325TF)ロボット溶接施工試験	54	
編集	後記	60	